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Abstract

The emerald ash borer (EAB) is an exotic insect pest currently threatening ash species in the Great Lakes region. Because of the potential
impact on forests in this area, multiple government agencies are currently focusing their efforts on developing new technologies to detect, monitor
and control this insect pest. Previous work has shown that hyperspectral remote sensing technologies can produce detailed maps of forest health
and species abundance on a landscape scale. This study examines the capability of a commercially available sensor (SpecTIR VNIR) to map ash
decline due to exotic EAB infestations in Michigan and Ohio. A 6-term linear regression equation based on known stress- and chlorophyll-
sensitive indices was able to predict decline on a continuous 0- to 10 scale with an r-squared of 0.71 and an average jackknifed residual of 0.61.
Treated as an integer, decline was predicted to within one class with 97% accuracy. The ability of this instrument to assess decline below class 4
(when dieback and transparency reach levels first noticeable in the field) is based upon pre-visual reductions in chlorophyll content and function
that are characteristic of early stress. The identification of early stress is critical in containing newly introduced exotics such as EAB. While this
decline prediction technique is not stress- or species-specific, it will enable land managers to assess and monitor detailed forest health across the
landscape.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Since it was first discovered in Michigan in 2002, the
emerald ash borer (EAB), Agrilus planipennis Fairmaire, has
killed more than 15 million ash trees in Michigan, Ohio and
Indiana (Maloney et al., 2006). In Ohio alone, total losses are
estimated to range between $1.8 and $7.6 billion (Sydnor et al.,
2007). If this exotic pest continues to spread across the U.S.,
economic impacts could reach into the hundreds of billions of
dollars. Ecological impacts are also of concern due to the
concentration of ash in riparian areas.

The EAB is native to Asia, where it reaches high densities on
a variety of host species. In the US, EAB infestation has resulted
in rapid mortality of ash of various sizes and conditions.
Infestation is not easily detected in newly infested trees
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(McCullough & Katovich 2004). Fine twig dieback is the
primary visual symptom, followed by extensive epicormic
branching in the lower portions of the trunk. As infestation
progresses, significant portions of the cambium are exposed by
woodpeckers feeding on EAB larvae along the bole. D-shaped
exit holes and distinct S-shaped larval feeding tunnels are the
most obvious direct signs of EAB (McCullough & Katovich
2004).

Currently, multiple government agencies are focusing their
efforts on developing new technologies to detect, monitor and
control EAB in an effort to prevent further spread. Because of
the potential for rapid spread, early detection will be important
for the ultimate control of this pest. One approach to early
detection over large areas involves remote sensing technology.
Narrow-band hyperspectral instruments have the capability to
identify early signs of stress- in some cases even when
symptoms are not visible to the human eye (Carter, 1993;
Carter & Miller, 1994; Cibula & Carter, 1992; Mohammed
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et al., 1995; Pontius et al., 2005a,b,c; Zarco-Tejada et al., 2000a,
b,c). Physiologically, this can be explained by the tendency of
stressed leaves to reduce photosynthetic activity and chlor-
ophyll content. Even subtle changes in these factors can alter
reflectance patterns in the visible and near-infrared (NIR)
spectrum (Carter & Knapp, 2001; Gitelson & Merzlyak, 1996;
Rock et al., 1988; Vogelmann & Rock, 1988; Vogelmann et al.,
1993).

The use of wavelength indices or band ratios pairs stress-
sensitive wavebands in combination with relatively stress-
insensitive bands to correct for variation in irradiance, leaf
orientation, and shading. The result is a variable that is
optimized for detection of plant stress (Carter, 1994).

The majority of plant stress indices are sensitive to foliar
chlorophyll content. Stress-induced changes in reflectance have
been directly linked to foliar chlorophyll content in numerous
studies (Gitelson&Merzlyak, 1996; Rock et al., 1988;Vogelmann
et al., 1993). When plants are subjected to stress, many
physiological changes occur, including: reductions in photosyn-
thetic activity (Carter & Knapp, 2001), inhibition of chlorophyll
formation (Bourque & Naylor, 1971), and an increasing break-
down of the chlorophyll molecule (Johnson, 1988). Efficient field
measurements of these chlorophyll related changes have been
approximated using measures of chlorophyll fluorescence (a
measure of photosynthetic activity) (Strasser et al., 1995; Strasser
& Tsimilli-Michael, 2001).
Fig. 1. Study Area. Six regions across southern MI and northern OH were flown by
imagery. These regions cover a range of ash density, health and EAB infestation lev
This paper describes techniques using commercially avail-
able hyperspectral remote sensing imagery to quantify detailed
ash decline using these stress sensitive indices. Specifically our
objectives were to:

1. Develop a field-based decline rating system in order to
capture and summarize the range of ash decline symptoms
resulting from EAB infestation.
2. Use the systemdeveloped in objective 1 to characterize ground
control plots covering a range of ash abundance and health.
3. Use hyperspectral remote sensing imagery in conjunction
with ground control plot data collected in objective 2 to
predict ash decline over large contiguous areas.

2. Methods

2.1. Image data

Funded by a multi-agency effort to test hyperspectral
technologies for forest health applications, SpecTIR flew a
VNIR sensor on a fixed wing aircraft over sections ofMI andOH
on June 5 and 6, 2006 (Fig. 1). These regions were selected by
the joint management team to cover a range of EAB infestation
histories, densities and impacts. The resulting 1-m resolution
imagery covers 12,000-ha with variable forest species composi-
tion and health.
a SpecTIR VNIR sensor for collection of high spatial resolution hyperspectral
els.



Fig. 2. Digital Canopy Transparency. Percent canopy transparency was quantified using a digital camera zoomed in to four different locations around the canopy. A
customized script converts color photographs to grayscale and then to black and white based on a user-defined threshold. Transparency is then calculated as the number
of white versus total pixels. The sequence presented here is for a healthy dense canopy (a) and a thinning decline canopy (b).
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SpecTIR's VNIR whiskbroom sensor has 128 6.6 nm bands
with a spectral range of approximately 450 nm to 990 nm.
Instrument altitude was set for a 1 m resolution collect in order
to distinguish individual tree canopies in urban areas. SpecTIR
delivered a Level 1 product, which included radiometrically
calibrated, geometrically corrected flight lines. Other than
applying the supplied INS correction to account for aircraft
geometry, no additional pre-processing of the imagery was
necessary. We used ENVI version 4.3 (ITT Visual Information
Solutions, Boulder, Colorado) software to mask non-forested
areas, extract spectra for calibration, and to predict decline on
the full extent of imagery.

2.2. Ground truth data collection

Within a one-week window of the image data collect, we
established 28 10-factor prism plots in MI and OH. The
selection of these locations was based upon local knowledge of
ash and EAB densities in order to maximize the range of health
for prediction calibration. A stem map was created for each plot
based on distance and bearing from the Trimble GPS geo-
located plot center. This allowed for the calculation of sub-meter
geo-location accuracy for individual tree crowns to link to the
imagery. Measurements on all trees included: species, diameter
at breast height, canopy position, and crown vigor.

In addition to stem mapping data, detailed decline measure-
ments were made on all ash species. Selecting only canopy-
dominant (visible to the sensor) ash from each plot resulted in
87 canopy-dominant ash trees, of which 60 were visible in the
imagery for decline equation development. The goal of
assessing decline was threefold:

1. Capture the various, sequential symptoms that follow EAB
infestation.While there are common stress responses in all tree
species, there are also stress- and species-specific symptoms
that may contain information important to decline detection.
For EAB, we included several measurements commonly used
in forest health assessment (vigor class, transparency, dieback
and live crown ratio), measurements of early stress symptoms
(chlorophyll fluorescence indices), and symptoms specific to
EAB infestation (woodpecker activity, epicormic branching,
and exit hole counts).
2. Create one continuous decline summary variable to link to
imagery. Traditional decline assessments involve broad class
variables based on one measurement like defoliation or
transparency. By combining measurements from all decline



2668 J. Pontius et al. / Remote Sensing of Environment 112 (2008) 2665–2676
symptoms, a complete picture of stress-related canopy struc-
ture and physiology is summarized in the dependent variable.
The spectral information relative to vegetation stress avail-
able with narrow-band hyperspectral sensors is not fully
utilized when limited to only a few class variables for one
stress symptom. Such classifications lack the precision
necessary to pick up early decline symptoms or monitor
small changes in health over time and limit the application of
quantitative statistics.
3. Minimize subjective, ocular measurements where possible.
Traditional decline assessment protocols involve subjective,
ocular-based field assessments of various crown character-
istics (i.e. dieback, transparency, crown vigor, and canopy
density). The subjective nature of such measurements renders
them vulnerable to issues of observer bias (Innes, 1998;
Sucharita et al., 1995).

To this end, each canopy-dominant ash tree was tagged and
sampled for a suite of decline symptoms. This included the
collection of multiple sunlit branches from the upper-canopy
using a 12-gauge shot gun. Measurements on sampled trees
included the following variables (described in detail below):
chlorophyll fluorescence measures, digital canopy transparency,
digital live crown ratio, percent fine twig dieback, EAB exit
hole counts, woodpecker activity and epicormic branching.

2.2.1. Chlorophyll fluorescence measures
Physiologically, one of the most pronounced effects of

incipient stress is a reduction in net photosynthesis (Carter &
Knapp, 2001). Chlorophyll fluorescence measurements taken
on dark-adapted leaves can be used to estimate overall photo-
synthetic capacity and photosynthetic efficiency.

To capture this early stress symptom, we measured chlo-
rophyll fluorescence using a Handy PEA Fluorometer with a
30-minute dark adaptation time and a light intensity of
3000 μmol photons m−2 s−1. We used the Handy PEA soft-
ware to calculate Performance Index (PI) and FvFm values
following the O–J–I–P test described in Strasser et al. (1995)
on five sun leaves from various portions of the upper canopy.
We then used the average PI and FvFm value from each subject
tree in the final health calculations.

2.2.2. Transparency
Digital photographs from multiple locations around the tree

were used to quantify crown transparency. The benefit of this
technique is the direct, mathematical quantification of transpar-
ency that can detect minute differences in canopy transparency,
while minimizing user bias.

Four different digital photos were taken from around the
subject canopy. We used a 10× optical zoom to ensure that all
photographs excluded the main bole and the sky outside the
perimeter of the main canopy. We normalized varying light
conditions using automatic shutter speed and aperture settings.

We wrote a custom script to extract percent transparency
from digital photographs. The first step transforms color photos
to a 1-255 grayscale image. Through visual examination of all
photos, we determined that a threshold value of 180 was the
most robust value to convert grayscale images to accurate black
and white binary files. Percent transparency was then calculated
based on the number of light pixels as a percentage of all pixels
in the image. The program also generates a composite image of
the original, gray scale, and black and white photos for a visual
quality check of correct classification of light (sky) and dark
(foliage) pixels (Fig. 2). An access database was then utilized to
average output from the four photos of each subject tree to
determine a final transparency value.

2.2.3. Percent fine twig dieback
The percent fine twig dieback measure considers dead

branches b2.5 cm diameter with mortality beginning at the
terminal portion of the limb and progressing inward. Following
FIA guidelines (USDA Forest Service 1997), two observers
classified dieback to the nearest 5% class after examining the
entire canopy of each subject tree.

2.2.4. Live crown ratio
One of the final and most obvious symptoms of severe

decline is a gradual reduction in the size of the photosynthe-
tically active canopy. Live crown ratio is calculated by
measuring the size of the live crown (total tree height minus
the base of the live crown) divided by the total tree height. The
base of the live crown is defined as the lowest live foliage that is
on a branch at least 2.5 cm in diameter and within 1.5 m of the
next live branch (USDA Forest Service, 2004).

2.2.5. Crown vigor rating
The crown vigor rating is based on an ocular assessment of

the overall crown condition. Assigned values range from 1 to 5
and were estimated according to Millers et al. (1991):

• 1 = healthy (no major branch mortality)
• 2 = light decline (10 to 25% of crown damaged)
• 3 = moderate decline (26 to 50% of crown damaged)
• 4 = severe decline (N50% of crown damaged)
• 5 = dead

2.2.6. Infestation symptoms
In addition to some of the more commonly used methods of

rating tree health, we included variables designed to quantify
some of the symptoms of EAB infestation and the specific
stress responses elicited by ash trees. These included epicormic
branching, woodpecker damage, and EAB exit holes. Similar
to crown vigor, epicormic branching and woodpecker activity
were divided up into 5-class categories. Epicormic branching
included any shoots or leaves sprouting from the main bole.
Woodpecker activity was witnessed as white patches on the main
bole where the outer bark had been peeled away. The entire main
bole was included in estimating the proportion impacted. Classes
were assigned as 0 = no evidence, 1 = trace to 10%, 2 = 11% to
25%, 3 = 26% to 50%, 4 = 51% to 75%, and 5 = greater than 75%
of the bole impacted. Exit holes from larvae are the most obvious,
direct evidence of EAB infestation.We examined themain bole of
each subject tree from 0.5 to 1.5 m above the ground, counting
every D-shaped hole as an estimate of EAB activity.



Table 2
Field-measurement normalization by quantiles (categorical variables)

Quantile-derived cut-offs for field-measured categorical variables were not as
straightforward to normalize. Here, we use crown vigor as an example of how
measured classes were assigned the average normalized class assignment.
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2.2.7. Summary decline rating calculation
In order to calibrate the spectral response of the canopy and

create an equation that could be used to predict tree health, we
created a single decline rating variable which normalizes and
integrates all of the individual health measures described above.

The first step in accomplishing this task was to normalize
each individual health variable to the same scale. Using JMP
Start statistical software, a 10-class quantile distribution
analysis was conducted on each variable in order to determine
the appropriate thresholds for class assignments. We used these
thresholds to translate the raw data to a 0–10 classification,
where 0 represents a perfectly healthy tree and a value of 10
means the tree is dead (Table 1).

Example output from a quantile analysis in Table 2 shows
clear thresholds for continuous variables such as percent
transparency. Categorical variables tend to be more confusing.
In such cases, each measured class value is assigned the average
normalized value (Table 3). This retains the original number of
categories while normalizing them to a 0 to 10 scale.

Tables 4 and 5 describe the assigned class thresholds that we
used to normalize all measured variables to the 0 to 10 scale.
These assignments were made based on the quantile distribution
of values from 87 ash trees sampled as a part of study. We then
averaged the normalized values to produce one overall
continuous decline value (Table 6). This final decline value
represents a synthesis value of all measured decline variables.

2.3. Equation development

We calculated wavelengths and indices related to plant stress
(Table 7) from the spectra extracted from the imagery for each
subject tree. These were entered into a mixed-stepwise linear
regression to identify the strongest set of predictor variables. For
an N of 60 trees, we limited the final equation to a maximum of
6 terms and set limits to enter at 0.05 and to leave at 0.01 to
avoid overfitting the equation (Williams & Norris 2001). The
mixed platform tests all possible linear regression combinations
and reports the set producing the lowest standard error of
calibration. Variables are entered in the order of greatest
significance and retained only if they remain significant as
Table 1
Field-measurement normalization by quantiles (continuous variables)

Quantile Measured %
transparency

Class
assignment

100% max possible value (dead) 100.0 10
99.50% 41.1 9
97.50% 37.9 8
90.00% 31.4 7
75.00% 26.7 6
50% median measured value 20.6 5
25.00% 14.9 4
10.00% 10.5 3
2.50% 9.0 2
0.50% 8.4 1
0% min possible value 0.0 0

Ten-class quantiles were used to establish cut-offs in translated field-measured
values to a normalized, 10-class scale. Here are the calculated quantiles for
percent transparency based on the 87 ash trees measured in this study.
additional variables are added. In order to limit autocorrelation,
variables were retained in the final model only if the variance
inflation factor was below ten (Kleinbaum et al., 1998).
Jackknifed residuals calculated from the PRESS statistic were
used to assess the stability of the final predictive equation as a
measure of independent validation accuracy (Kozak & Kozak
2003).

We applied the final decline model to the imagery on a pixel-
by-pixel basis using the Band Math function in ENVI. Non-
forested areas were identified with a supervised classification
(Spectral Angle Mapper) and masked in ENVI to ensure
equation application to forested areas only.

3. Results and discussion

3.1. Ground truth data

From the 28 plots in MI and OH, we sampled 60 canopy-
dominant ash trees with crowns clearly visible to the airborne
sensor. Diameter at breast height varied from 11 cm in a very
young stand, to 95.8 cm in a mature stand. The final decline
rating ranged from 2.07 (healthy) to 10 (dead) (Table 7). De-
cline was significantly higher (p=0.0012) in the MI stands
(average decline=4.9 at Independence Lake and 4.2 at Speed-
way) where EAB infestation was identified in the late 1990s.
The uninfested southern OH stand was the healthiest (average
decline=2.8 at Mary Jane Thurston State Park), while the ash
trees in the northern OH stand were beginning to show early
signs of decline (Oak Openings State Park=3.9). Incipient EAB
infestation was confirmed by the presence of several exit holes
on six of the trees sampled at Oak Openings.

Specific signs of EAB infestation are typically not evident
until the tree is showing other signs of physiological stress. This
is illustrated in Fig. 3 where we see no evidence of epicormic
branching on any trees below an overall decline class of 3, no
woodpecker activity on any trees with an overall decline class
less than 4, and minimal numbers of exit holes on trees below an



Table 3
Quantile cut-offs (continuous variables)

Field measured values

Class assignment
for averaging

Percent dieback Percent live
crown

Percent digital canopy
transparency

FvFm Performance index
(PI)

EAB exit hole
count

0 0 93 to 100 b2 0.8498 to 0.850 N10 0
1 88 to 92 2 to 8 0.8491 to 0.8497 6.15 to 10 1 to 2
2 5 75 to 87 9 to 11 0.8477 to 0.8490 6.10 to 6.14 3 to 5
3 67 to 74 12 to 15 0.842 to 0.8476 5.18 to 6.09 6 to 8
4 10 58 to 66 16 to 21 0.836 to 0.841 4.41 to 5.17 9 to 19
5 15 48 to 57 22 to 28 0.825 to 0.835 3.42 to 4.40 20 to 30
6 20 34 to 48 29 to 33 0.813 to 0.824 2.71 to 3.41 30 to 50
7 25 to 40 23 to 34 34 to 37 0.749 to 0.812 1.99 to 2.70 51 to 84
8 45 to 85 11 to 23 38 to 41 0.733 to 0.748 1.46 to 1.98 85 to 119
9 90 to 95 1 to 10 42 to 71 0.999 to 0.732 1.32 to 1.45 120 to 128
10 100 0 72 to 100 0 to 0.1 0 to 1.31 N128

Quantile cut-off values to normalize measurements to a 0–10 scale were calculated from the 87 ash sampled in Michigan and Ohio. Measurements were assigned a
class value based on these cut-offs and then averaged to produce one summary decline rating.

Table 5
Example decline rating calculation
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overall decline class of 5. This indicates that EAB infestation is
not visibly detectable until infestation has already affected tree
health. This suggests that visible signs of infestation such as exit
hole counts, epicormic branching, or woodpecker damage are
not reliable for detecting incipient EAB infestation.

3.2. Decline predictions

While multiple indices were significantly correlated (p b0.01)
with decline (Table 6), the stepwisemultiple linear regressionwas
limited to 6 terms to avoid overfitting. The final, best-fit model
included primarily chlorophyll and canopy water content sen-
sitive indices (Table 8, Fig. 5). Validation of the continuous
decline prediction resulted in an r-square of 0.71 and RMSE of
0.582 (Fig. 4). An average jackknifed residual error (0.61 com-
pared to RMSE=0.58) indicates that we could expect this model
to perform similarly on an independent data set. When the con-
tinuous decline rating is rounded to the nearest integer for class
comparison, the model was able to predict decline for the cal-
ibration datawith 63% accuracy and an accuracy of 97% towithin
one class.

3.3. Key variables

The most heavily weighted variable retained in the regression
model was the chlorophylla sensitive CSc index identified by
Table 4
Quantile cut-offs (categorical variables)

Class assignment value

Field measured class Crown vigor Epicormic rating Woodpecker activity

0 0 0 0
1 2 1.5 3
2 4 4 6
3 5.5 6 8
4 7.5 8 9
5 10 9.5 10

Class assignments for categorical variables were averaged by quantile to match
the original number of groupings.
Carter and Miller (1994) as a measure of early stress detection in
soybeans (scaled estimate=2.71). CSc is calculated as the ratio
of reflectance at R605 / R760. Carter (1994) found that this index
responded consistently and significantly to eight different stress
agents across 6 different plant species in laboratory studies. The
significance of this index results from the weak absorbance of
chlorophyll at 605 nm where small decreases in chlorophyll
content result in significant increases in leaf reflectance.

The second most heavily weighted variable in our model was
GMb (scaled estimate=2.52). Developed by Gitelson and
Merzlyak (1994), this ratio of reflectance at R750 / R700, was
found to be directly proportional to chlorophyll concentration of
sugar maple and horse chestnut leaves collected at various
intervals over the growing season. Additional studies determined
that GMb is accurate for assessing chlorophyll content at both the
leaf and canopy levels (Gitelson et al., 1996) and for direct
estimation of early stages of plant stress (Carter, 1993, 1994).

A third chlorophyll sensitive wavelength (scaled estimate=
−0.91) retained in our model was the ratio of first derivative
spectra at FD715 / FD705 (Vogb). Laboratory measurements
found that this parameter was highly correlated with variation in
total chlorophyll content in sugar maple experiencing various
levels of insect damage (Vogelmann et al., 1993). This index is
Variable Measured value Class assignment

Crown vigor 4 7.5
Dieback 80 7
Epicormic rating 1 1.5
Exit hole count 30 5
FvFm 0.84 4
Live crown ratio 0.54 5
PI 3.40 5
Transparency 29.82 6
Woodpecker rating 2 6
Average 5.22

A sample calculation of overall decline rating shows the field-measured value
for each variable, its normalized class assignment and the final average value to
be used in equation development.



Table 6
Plant stress sensitive spectral indices

Variable Formula Citation Correlation Signif prob

Achl R550 /R800 Aoki, Yabuki, and Totsuka (1981) 0.62 0.00
Bna R800−R550 Buschman and Nagel (1993) −0.42 0.00
BNb R800 /R550 Buschman and Nagel (1993) −0.59 0.00
CSc R605/R760 Carter (1994) 0.64 0.00
CSd R710 /R760 Carter (1994) 0.57 0.00
Cse R695 /R760 Carter (1994) 0.60 0.00
Datt c FD754 /FD704 Datt (1999) −0.44 0.00
DVI R800−R680 Tucker (1979) −0.38 0.00
EZ Sum FD 625 to 795 Elvidge and Zhikang (1995) −0.39 0.00
FD 717 FD 717 Pontius et al. 2005 −0.28 0.03
FD720 FS720 Boochs et al. (1990) −0.34 0.01
Flo FD690 /FD735 Mohammed et al. (1995) 0.52 0.00
FP Sum FD 680 to 780 Filella and Penuelas (1994) −0.38 0.00
GI R554/R677 Smith et al. (1995) −0.04 0.78
GM R750 /R550 Gitelson and Merzlyak (1994) −0.60 0.00
GMb R750/R700 Gitelson and Merzlyak (1994) −0.48 0.00
Mac (R780−R710) / (R780−R680) Maccioni et al 2001 −0.40 0.00
McM R700 /R760 McMurtey et al 1994 0.59 0.00
mND705 (R750−R705) / (R750+RR705+2R445) Sims and Gamon (2002) −0.56 0.00
MSR705 (R750−R445) / (R705−R445) Sims and Gamon (2002) −0.49 0.00
NDI (R750−R705) /R750+R705 Gitelson and Merzlyak (1994) −0.49 0.00
NDVI (R800−R680) / (R800+R680) Gamon et al., (1997) −0.53 0.00
NPQI (R415−R435)/(R415+R435) Barnes (1992) −0.41 0.00
OSAVI (R800−R680) / (R800+R680+0.16) Rondeaux et al., (1996) −0.53 0.00
PSNDb (R800−R635) / (R800+R635) Blackburn (1998) −0.58 0.00
PSSRb R800 /R635 Blackburn (1998) −0.55 0.00
R 950 R 950 Williams and Norris (2001) −0.38 0.00
R760 R760 Carter and Miller (1994) −0.38 0.00
R800 R800 Osborne and Fearn (1986) −0.36 0.00
RDVI sqrt(NDVI ⁎ DVI) Roujean and Breon (1995) −0.43 0.00
REIP FD max near 700 Gitelson et al. (1996); Vogelmann et al. (1993) −0.31 0.02
RVI R800 /R680 Pearson and Miller (1972) −0.51 0.00
SD707 SD707 Pontius et al. (2005) −0.57 0.00
TVI 0.5 ⁎ (120 ⁎ (Ravg760to800−Ravg530to570)−

(200 ⁎ (Ravg650to680−Ravg530to570)
Broge and Leblanc, (2001) −0.31 0.02

Voga R740 /R720 Vogelmann et al. (1993) −0.46 0.00
Vogb FD715/FD705 Vogelmann et al. (1993) −0.05 0.69
WBI R970/R900 Carter (1993) 0.57 0.00

Existing plant stress indices were calculated from the spectra of each sample pixel. While all of these were significantly correlated with ash decline, only six (bold)
were retained in the final decline predictive equation.
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not sensitive to differences in green leaf biomass or background
condition, which is important for remote sensing studies where
canopy characteristics vary widely from pixel to pixel
(Vogelmann et al., 1993).

The Normalized Phaeophytinization Index (NPQI) calculated
as (R415−R435) / (R415+R435) was also retained in the predictive
model (scaled estimate=−0.61). NPQI is an expression of the
ratio of chlorophylla to phaeophytina content in the leaf and
reflects a relative measure of the degree of chlorophyll
Table 7
Decline data distribution

dbh Decline PI FvFm Transp. Dieback Live crown

Avg 39.8 4.0 2.8 0.6 20.1 26.8 0.6
Min 11.4 2.1 0.0 0.0 0.0 0.0 0.0
Max 95.8 10.0 6.2 0.8 41.1 90.0 0.9
Stdev 16.7 1.3 1.8 0.4 8.4 23.8 0.2

The 87 trees sampled for this study covered a range of size class, health, and EAB
degradation (Barnes, 1992). Penuelas et al. (1995) linked NPQI
directly to mite-induced stress at the leaf level. It has also been
shown as a strong detector of early stress in bark beetle-damaged
lodgepole pine (Ahern, 1988; Lorenzen & Jensen, 1989).

The greenness index (GI) (scaled estimate=1.03) is one of
the classic vegetation indices that quantifies the essential
“greenness” contained within a given pixel. It has been most
strongly linked to leaf area index and other structural stand
characteristics as opposed to leaf pigment concentration.
Crown vigor Epicormic rating Exit hole count Woodpecker rating

2.6 1.3 7.8 1.4
1.0 0.0 0.0 0.0
5.0 5.0 125.0 4.0
1.0 0.9 19.6 0.8

infestation densities.



Fig. 3. EAB Infestation Symptoms. Direct signs of EAB are not typically
witnessed until decline class 3 or 4, well after stress-induced changes in chlo-
rophyll content and function.

Fig. 4. Validation Results. A six-term linear regression model based on
chlorophyll and water sensitive indices was able to predict a detailed 10-class
decline rating for ash with a one-class tolerance accuracy of 97%.
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However, more recent studies have shown a significant
relationship between GI and chlorophylla&b concentrations
(Zarco-Tejada et al., 2005; Zarco-Tejada et al., 2000b; Zarco-
Tejada et al., 2001). It is expected that the GI would have a
lower sensitivity to early plant stress (Zarco-Tejada, 2000).
Instead, it primarily serves as an indicator of prolonged
vegetation stress resulting from changes in canopy structure
(Zarco-Tejada, 2000). This index is probably most useful in
detecting stands in more advanced stages of decline.

TheWater Band Ratio (WBI) is a ratio between the reflectance
at R970, where absorbance by water is evident, and R900 used as a
reference, or “control” band. Several studies have shown that the
WBI is sensitive to changes in leaf relative water content, leaf
water potential and stomatal conductance (Bull, 1991; Penuelas
et al., 1993; Penuelas et al., 1996; Penuelas et al., 1994). In some
species, WBI is able to detect even mild water stress (Penuelas
Table 8
Final predictive decline equation

Variable Index formula Parameter
estimate

Association Reference

Intercept −18.859
CSc R605 /R760 53.041 Chlorophylla Carter (1994)
GI R554 /R677 1.868 Leaf area

index,
chlorophyllab

Smith et al. (1995)

Vogb FD715/FD705 −2.952 Total
chlorophyll
content

Vogelman et al. (1993)

NPQI (R415−R435) /
(R415+R435)

−10.77 Chlorophyll
degradation

Barnes et al., (1992)

GMb R750/R700 1.683 Total
chlorophyll
content

Gitelson and
Merzlyak (1994)

WBI R970 /R900 7.002 Canopy
water content

Carter (1993);
Penuelas et al., 1997;
Tucker 1980

The six indices retained in the final decline predictive equation are known to be
sensitive to plant stress according to various field and laboratory studies. These
indices were comprised primarily of chlorophyll-sensitive wavelengths, which
correspond to the expected reduction in chlorophyll content and photosynthetic
function in stressed leaves.
et al., 1996). Its inclusion in the predictive model is likely due to
the disruption of water transport from EAB larvae feeding in the
cambial region resulting in foliar desiccation.

3.4. Image products

The final equation was applied to the imagery on a pixel-by-
pixel basis, resulting in a decline rating for all forested pixels.
More severe decline (average decline=2.9) is evident in the
forested stands of southeastern Michigan (Fig. 6). This coincides
with the longest known EAB infestation. By comparison, the
southernmost study areas located in OH were not infested with
EAB at the time the imagery was collected and have an average
decline rating of 0.9 (Fig. 7). The northernmost study area inOhio
shows higher average decline ratings (average decline=2.7) in-
dicating the possibility of incipient EAB infestation (Fig. 8). This
highlights an area where management agencies might focus their
ground efforts to locate newer infestations.
Fig. 5. Key Wavelengths. The full visible and NIR spectrum are not required to
predict ash decline. Here we used 6 known plant stress indices which are
sensitive to changes in chlorophyll content, function or canopy water content.
Such indices generally pair a stress sensitive wavelength, with an insensitive
wavelength in order to account for differences in shading, view angle or
background interferences.



Fig. 6. Decline Close-Up: Independence Lake, MI. The predicted decline coverage over Independence Lake, a region of high ash density and prolonged EAB
infestation, highlights large areas of high decline. Average forest decline was 4.9 on the 0 to 10 scale.
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Plant-physiological responses to stress are similar regardless
of the cause of stress (Chapin, 1991). Therefore, we can not
conclude that declining trees identified in our coverages are
infested with EAB. However, detection of incipient infestations
can be facilitated by identifying areas of low-level decline for
concentrated ground team inspection.
Fig. 7. Decline Close-Up: Mary Jane Thurston Park, OH. The predicted decline cove
EAB infestation, shows an abundantly healthy forest. Average decline was 2.1 on th
4. Conclusions

The field-based decline rating system developed for this
study was able to capture and summarize the full range of ash
decline that existed within the study areas. These data were used
in conjunction with hyperspectral remote sensing imagery to
rage over Mary Jane Thurston Park, a region of high ash density and no known
e 0 to 10 scale.



Fig. 8. Decline Close-Up: Oak Openings, OH. Oak Openings lies in northern OH where EAB infestation has not yet been reported. However, the predicted decline
coverage of the region does show several areas of declining tree health. These are concentrated along riparian areas where ash is a common component. Average
decline was 3.9 on the 0 to 10 scale, indicating that ground crews may wish to target this area for ground surveys of EAB spread.
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create continuous coverages of predicted forest health with an
emphasis on ash species in areas that are currently being im-
pacted by EAB infestation.

This study shows that commercially available airborne hy-
perspectral imagery can be used to produce detailed ash decline
maps for relatively large areas. Seventy one percent of the
variability in ash decline was accounted for with 6 chlorophyll-
and canopy water content-sensitive indices. Given that this
predictive equation holds at the low end of our continuous decline
rating scale, before decline symptoms are visible to observers on
the ground, these techniques could be particularly valuable to land
managers that need to direct field crews to areas of possible
incipient infestation to identify problems early.

Compared to traditional decline classification, this hy-
perspectral based predictive model differentiated 5 decline
classes with 97% accuracy. This represents an improvement
in both accuracy and detail over more common multi-spectral
remote sensing assessments of forest health. However, the
extent to which these techniques can be used to monitor forest
health is still unclear due to high costs, limited availability,
and complex processing requirements. We anticipate that over
time, competition in the private sector and currently planned
satellite sensors will make this technology available to a wider
audience.

The combination of traditional plot-level forest health assess-
ment techniques with commercially available hyperspectral
remote sensing imagery presented here can produce accurate,
detailed, large scale maps of forest health. These data products,
which can highlight areas of pre-visual tree decline, represent a
significant advance in our ability to identify forest health prob-
lems earlier than ever. Utilizing these capabilities is essential to
the ultimate identification, containment and control of current
and future invasive pests.
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